login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First differences of the tribonacci representation numbers (A003726 or A278038).
2

%I #37 Dec 23 2019 18:57:56

%S 1,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,1,2,1,1,1,5,1,1,1,1,1,1,2,1,1,1,

%T 1,1,3,1,1,1,1,1,1,10,1,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,1,2,1,1,1,5,

%U 1,1,1,1,1,1,2,1,1,1,1,1,19,1,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,1,2,1,1,1,5

%N First differences of the tribonacci representation numbers (A003726 or A278038).

%C This sequence appears to consist of runs of 1's of lengths given (essentially) by A275925, separated by single numbers > 1, which define the terms of A319431.

%C It would be nice to have a recurrence of some kind that produces A319431.

%H Rémy Sigrist, <a href="/A319430/b319430.txt">Table of n, a(n) for n = 0..50000</a> (first 9999 terms from N. J. A. Sloane)

%F Conjecture: All terms are of the form ceiling(2^k/7) for some k (cf. A046630), and all numbers of the form ceiling(2^k/7) occur.

%F Conjecture (continued): Furthermore, new values of ceiling(2^k/7) (that is, new records) appear at n = 0, 6,12, 23, 43, 80, 148, 273, ..., which (apart from the start) are the tribonacci numbers minus 1, A000073 - 1, or A089068.

%F a(n) = ceiling(2^i/7) iff the Tribonacci representation of n+1 ends in i 0's. - _Jeffrey Shallit_, Oct 02 2018

%t Differences@ Select[Range[0, 160], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] (* _Michael De Vlieger_, Dec 23 2019 *)

%Y Cf. A000073, A003726, A046630, A089068, A275925, A278038, A319431.

%K nonn

%O 0,7

%A _N. J. A. Sloane_, Sep 30 2018