login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Filter sequence combining A003415(d) from all proper divisors d of n, where A003415(d) = arithmetic derivative of d.
3

%I #14 Oct 03 2018 21:35:37

%S 1,2,2,3,2,4,2,5,3,4,2,6,2,4,4,7,2,8,2,9,4,4,2,10,3,4,11,12,2,13,2,14,

%T 4,4,4,15,2,4,4,16,2,17,2,18,19,4,2,20,3,21,4,22,2,23,4,24,4,4,2,25,2,

%U 4,26,27,4,28,2,29,4,30,2,31,2,4,32,33,4,34,2,35,36,4,2,37,4,4,4,38,2,39,4,40,4,4,4,41,2,42,43,44,2,45,2,46,47

%N Filter sequence combining A003415(d) from all proper divisors d of n, where A003415(d) = arithmetic derivative of d.

%C Restricted growth sequence transform of A319356.

%C The only duplicates in range 1..65537 with a(n) > 4 are the following six pairs: a(1445) = a(2783), a(4205) = a(11849), a(5819) = a(8381), a(6727) = a(15523), a(8405) = a(31211) and a(28577) = a(44573). All these have prime signature p^2 * q^1. If all the other duplicates respect the prime signature as well, then also the last implication given below is valid.

%C For all i, j:

%C a(i) = a(j) => A000005(i) = A000005(j),

%C a(i) = a(j) => A319683(i) = A319683(j),

%C a(i) = a(j) => A319686(i) = A319686(j),

%C a(i) = a(j) => A101296(i) = A101296(j). [Conjectural, see notes above]

%H Antti Karttunen, <a href="/A319357/b319357.txt">Table of n, a(n) for n = 1..65537</a>

%e Proper divisors of 1445 are [1, 5, 17, 85, 289], while the proper divisors of 2783 are [1, 11, 23, 121, 253]. 1 contributes 0 and primes contribute 1, so only the last two matter in each set. We have A003415(85) = 22 = A003415(121) and A003415(289) = 34 = A003415(253), thus the value of arithmetic derivative coincides for all proper divisors, thus a(1445) = a(2783).

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415

%o A319356(n) = { my(m=1); fordiv(n, d, if(d<n, m *= prime(1+A003415(d)))); (m); };

%o v319357 = rgs_transform(vector(up_to,n,A319356(n)));

%o A319357(n) = v319357[n];

%Y Cf. A003415, A319356.

%Y Cf. A000041 (positions of 2's), A001248 (positions of 3's), A006881 (positions of 4's),

%Y Cf. also A300245, A300249, A319353, A319693.

%K nonn

%O 1,2

%A _Antti Karttunen_, Oct 02 2018