Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 02 2020 12:00:22
%S 1,2,6,24,120,720,5040,5048,5112,5760,12960,100080,1240560,17302320,
%T 17302335,17302560,17306400,17375760,18697680,45209520,603353520,
%U 603353542,603354026,603365664,603657120,611247120,816480720,6570915120,6570915149,6570915990
%N a(n) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16*17*18*19*20*21 + ... + (up to n).
%C In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=7.
%H Colin Barker, <a href="/A319208/b319208.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = Sum_{i=1..floor(n/7)} (7*i)!/(7*i-7)! + Sum_{j=1..6} (1-sign((n-j) mod 7)) * (Product_{i=1..j} n-i+1).
%e a(1) = 1;
%e a(2) = 1*2 = 2;
%e a(3) = 1*2*3 = 6;
%e a(4) = 1*2*3*4 = 24;
%e a(5) = 1*2*3*4*5 = 120;
%e a(6) = 1*2*3*4*5*6 = 720;
%e a(7) = 1*2*3*4*5*6*7 = 5040;
%e a(8) = 1*2*3*4*5*6*7 + 8 = 5048;
%e a(9) = 1*2*3*4*5*6*7 + 8*9 = 5112;
%e a(10) = 1*2*3*4*5*6*7 + 8*9*10 = 5760;
%e a(11) = 1*2*3*4*5*6*7 + 8*9*10*11 = 12960;
%e a(12) = 1*2*3*4*5*6*7 + 8*9*10*11*12 = 100080;
%e a(13) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13 = 1240560;
%e a(14) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 = 17302320;
%e a(15) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15 = 17302335;
%e a(16) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16 = 17302560; etc.
%t Table[Total[Times@@@Partition[Range[n],UpTo[7]]],{n,30}] (* _Harvey P. Dale_, Aug 02 2020 *)
%Y Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) this sequence, (k=8) A319209, (k=9) A319211, (k=10) A319212.
%K nonn,easy
%O 1,2
%A _Wesley Ivan Hurt_, Sep 13 2018