login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319208
a(n) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16*17*18*19*20*21 + ... + (up to n).
10
1, 2, 6, 24, 120, 720, 5040, 5048, 5112, 5760, 12960, 100080, 1240560, 17302320, 17302335, 17302560, 17306400, 17375760, 18697680, 45209520, 603353520, 603353542, 603354026, 603365664, 603657120, 611247120, 816480720, 6570915120, 6570915149, 6570915990
OFFSET
1,2
COMMENTS
In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=7.
LINKS
FORMULA
a(n) = Sum_{i=1..floor(n/7)} (7*i)!/(7*i-7)! + Sum_{j=1..6} (1-sign((n-j) mod 7)) * (Product_{i=1..j} n-i+1).
EXAMPLE
a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7 + 8 = 5048;
a(9) = 1*2*3*4*5*6*7 + 8*9 = 5112;
a(10) = 1*2*3*4*5*6*7 + 8*9*10 = 5760;
a(11) = 1*2*3*4*5*6*7 + 8*9*10*11 = 12960;
a(12) = 1*2*3*4*5*6*7 + 8*9*10*11*12 = 100080;
a(13) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13 = 1240560;
a(14) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 = 17302320;
a(15) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15 = 17302335;
a(16) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16 = 17302560; etc.
MATHEMATICA
Table[Total[Times@@@Partition[Range[n], UpTo[7]]], {n, 30}] (* Harvey P. Dale, Aug 02 2020 *)
CROSSREFS
Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) this sequence, (k=8) A319209, (k=9) A319211, (k=10) A319212.
Sequence in context: A033645 A248769 A319547 * A276841 A364427 A273694
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Sep 13 2018
STATUS
approved