login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319027
Number of preimages of 321-avoiding permutations of [n] under West's stack-sorting map.
0
1, 2, 6, 24, 117, 652, 3988, 26112, 180126, 1295090, 9631656, 73676572, 577180996, 4615090192, 37562920238, 310523535692, 2602546111313, 22080769557894, 189403492226689, 1640772609911156, 14341379756793722, 126376359608556754, 1121937445109205927, 10028423238950860458, 90203410822880721480
OFFSET
1,2
COMMENTS
Let s denote West's stack-sorting map. Let Av_n(tau) be the set of permutations of [n] that avoid the pattern tau. The only length-3 pattern tau for which there is no known formula for |s^{-1}(Av_n(tau))| is 321.
It is known that 8.4199 <= lim_{n--> infinity} a(n)^{1/n} <= 11.6569.
LINKS
Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
EXAMPLE
Let s denote West's stack-sorting map. Among the permutations of [5], the only permutations pi for which s(pi) contains the pattern 321 are 35241, 34251, and 45231. The term a(5) = 117 counts all of the other permutations of [5].
MAPLE
(requires Flexible_Scheme package -- see links)
read `Flexible_Scheme.mpl`:
s:= {[[], []], [[1], []], [[2, 1], []], [[2, 1, 3], []], [[2, 3, 1], []], [[2, 3, 1, 4], []], [[1, 2], [[[0, 0, 0], 1]], 1], [[1, 2, 3], [[[0, 0, 0, 0], 1]], 1], [[1, 3, 2], [[[0, 0, 0, 0], 1]], 1], [[3, 1, 2], [[[0, 0, 0, 0], 2]], 1], [[3, 2, 1], [[[0, 1, 1, 0], 0]], 2], [[2, 1, 3, 4], [[[0, 0, 0, 0, 0], 3]], 1], [[2, 1, 4, 3], [[[0, 0, 0, 1, 0], 1]], 3], [[2, 3, 4, 1], [[[0, 0, 0, 0, 0], 1]], 1], [[2, 4, 1, 3], [[[0, 0, 0, 1, 0], 1], [[0, 0, 1, 0, 0], 1]], 4], [[2, 4, 3, 1], [[[0, 0, 0, 1, 0], 1], [[0, 0, 1, 0, 0], 1]], 2], [[4, 2, 1, 3], [[[0, 1, 1, 0, 0], 0]], 2], [[4, 2, 3, 1], [[[0, 0, 0, 1, 0], 2], [[0, 1, 0, 0, 0], 0]], 1], [[2, 3, 1, 4, 5], [[[0, 0, 0, 0, 0, 0], 4]], 1], [[2, 3, 1, 5, 4], [[[0, 0, 0, 0, 1, 0], 1], [[0, 0, 1, 0, 0, 0], 1]], 4], [[2, 3, 5, 1, 4], [[[0, 0, 0, 0, 0, 0], 1]], 1], [[2, 5, 3, 1, 4], [[[0, 0, 0, 0, 1, 0], 1], [[0, 0, 0, 1, 0, 0], 1], [[0, 0, 1, 0, 0, 0], 1]], 2], [[5, 2, 3, 1, 4], [[[0, 0, 0, 1, 0, 0], 2], [[0, 1, 0, 0, 0, 0], 0]], 1]}:
#let n be the number of terms desired
SeqS(s, n); # Yonah Biers-Ariel, May 27 2020
CROSSREFS
Sequence in context: A329788 A177518 A369832 * A228397 A164871 A226436
KEYWORD
nonn,more
AUTHOR
Colin Defant, Sep 08 2018
EXTENSIONS
Terms a(10) and beyond from Yonah Biers-Ariel, May 27 2020
STATUS
approved