|
|
A164871
|
|
The number of permutations of length n that can be sorted by 3 pop stacks in parallel.
|
|
1
|
|
|
1, 1, 2, 6, 24, 118, 644, 3622, 20366, 113686, 630464, 3481084, 19171838, 105444400, 579547826, 3184321642, 17493771830, 96100287256, 527905628552, 2899911094078, 15929870658308, 87506389326742, 480692570563526, 2640554790693958, 14505177373598504
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
R. Smith and V. Vatter, The enumeration of permutations sortable by pop stacks in parallel
Index entries for linear recurrences with constant coefficients, signature (14,-75,201,-288,216,-72).
|
|
FORMULA
|
G.f.: (1 -13*x +63*x^2 -148*x^3 +177*x^4 -98*x^5 +18*x^6) / (1 -14*x +75*x^2 -201*x^3 +288*x^4 -216*x^5 +72*x^6).
a(n) = 14*a(n-1) - 75*a(n-2) + 201*a(n-3) - 288*a(n-4) + 216*a(n-5) - 72*a(n-6) for n>6. - Colin Barker, Jul 02 2019
|
|
MATHEMATICA
|
LinearRecurrence[{14, -75, 201, -288, 216, -72}, {1, 1, 2, 6, 24, 118, 644}, 30] (* Harvey P. Dale, Mar 09 2022 *)
|
|
PROG
|
(PARI) Vec((1 - x)*(1 - 12*x + 51*x^2 - 97*x^3 + 80*x^4 - 18*x^5) / ((1 - 2*x)*(1 - 12*x + 51*x^2 - 99*x^3 + 90*x^4 - 36*x^5)) + O(x^30)) \\ Colin Barker, Jul 02 2019
|
|
CROSSREFS
|
Sequence in context: A177518 A319027 A228397 * A226436 A224318 A079106
Adjacent sequences: A164868 A164869 A164870 * A164872 A164873 A164874
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincent Vatter, Aug 29 2009
|
|
STATUS
|
approved
|
|
|
|