login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319009
Numbers k such that the multiplicative order of 2 modulo k is psi(k), psi = A002322.
1
1, 3, 5, 9, 11, 13, 15, 19, 21, 25, 27, 29, 33, 35, 37, 39, 45, 53, 55, 57, 59, 61, 63, 65, 67, 69, 75, 77, 81, 83, 87, 91, 95, 99, 101, 105, 107, 111, 115, 117, 121, 125, 131, 133, 135, 139, 141, 143, 145, 147, 149, 159, 163, 165, 169, 171, 173, 175, 177, 179, 181
OFFSET
1,2
COMMENTS
Numbers k such that the multiplicative order of 2 modulo k is at its maximum possible value.
Numbers k such that the binary expansion of 1/k has period psi(n).
Numbers k such that A002326((k-1)/2) = A002322(k).
This is a generalization of A167791, so A167791 is a proper subsequence.
Write k as k = Product_{i=1..t} (p_i)^(e_i) where p_i are distinct primes. If (p_i)^(e_i) belongs to A167791 (and thus here) for 1 <= i <= t, then k is also here, but the converse is not true. In fact, this sequence has terms such that none of (p_i)^(e_i) belongs to A167791, the smallest of which is 301 = 7*43. The multiplicative order of 2 modulo 7 and 43 are 3 (< psi(7) = 6) and 14 (< psi(43) = 42), so the multiplicative order of 2 modulo 301 is lcm(3, 14) = 42 = psi(301).
LINKS
EXAMPLE
The multiplicative order of 2 modulo 15 is 4 = A002322(15), so 15 is a term.
The multiplicative order of 2 modulo 21 is 6 = A002322(21), so 21 is a term.
The multiplicative order of 2 modulo 51 is 8, but A002322(51) = 16, so 51 is not a term.
MAPLE
select(n -> numtheory:-order(2, n)=numtheory:-lambda(n), [seq(i, i=1..1000, 2)]); # Robert Israel, Sep 12 2018
PROG
(PARI) forstep(n=1, 200, 2, if(znorder(Mod(2, n))==lcm(znstar(n)[2]), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 07 2018
STATUS
approved