login
A318907
Numbers m such that A006666(m)/A006667(m) is an integer.
0
5, 6, 10, 17, 20, 21, 24, 26, 40, 42, 44, 45, 46, 80, 84, 85, 96, 104, 106, 112, 113, 116, 117, 120, 122, 136, 138, 140, 141, 150, 151, 159, 160, 168, 170, 283, 288, 296, 298, 304, 308, 309, 320, 321, 324, 325, 326, 331, 336, 340, 341, 377, 384, 416, 424, 426
OFFSET
1,1
COMMENTS
A006666 and A006667 are respectively the number of halving and tripling steps in the '3x+1' problem.
The corresponding integers are 4, 3, 5, 3, 6, 6, 4, 4, 7, 7, 3, 3, 3, 8, 8, 8, 5, 5, 5, 3, 5, 3, 3, 3, ...
The numbers of the form (4^k - 1)/3 for k > 1 (A002450) are in the sequence.
We observe subsets of consecutive numbers: (5, 6), (20, 21), (44, 45, 46), (84, 85), (112, 113), ...
EXAMPLE
17 is in the sequence because A006666(17)/A006667(17) = 9/3 = 3 is integer.
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 70; t = {}; n = 0; While[Length[t] < nn, n++; c = Collatz[n]; ev = Length[Select[c, EvenQ]]; od = Length[c] - ev - 1; If[od>0 && IntegerQ[ev/od], AppendTo[t, n]]]; t
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 06 2018
STATUS
approved