login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Filter sequence combining the prime signature of n (A046523) with the largest prime factor of n (A006530).
5

%I #7 Sep 16 2018 21:43:47

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,10,15,16,12,17,18,14,19,20,21,22,23,

%T 24,25,26,27,28,29,19,30,14,31,32,33,23,34,35,36,37,38,18,39,40,41,42,

%U 18,30,43,44,21,19,45,33,46,47,48,49,50,25,51,23,52,53,54,39,36,55,56,57,58,18,59,19,60,61,62,63,64,65,66,30,67,46,68,69,48,23,70,50

%N Filter sequence combining the prime signature of n (A046523) with the largest prime factor of n (A006530).

%C Restricted growth sequence transform of A286356.

%C For all i, j: a(i) = a(j) => A297112(i) = A297112(j). (Also, equivalently, A297113 or A297167 in place of A297112.)

%H Antti Karttunen, <a href="/A318891/b318891.txt">Table of n, a(n) for n = 1..65537</a>

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523

%o A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));

%o A318891aux(n) = [A046523(n), A061395(n)];

%o v318891 = rgs_transform(vector(up_to,n,A318891aux(n)));

%o A318891(n) = v318891[n];

%Y Cf. A006530, A046523, A061395, A286356, A318890.

%Y Cf. also A297112, A297113, A297167.

%K nonn

%O 1,2

%A _Antti Karttunen_, Sep 16 2018