The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318859 Number of rooted trees with n nodes such that two equals the maximal number of isomorphic subtrees extending from the same node. 3
 0, 1, 1, 4, 9, 22, 54, 138, 346, 889, 2285, 5928, 15436, 40424, 106230, 280305, 741912, 1969816, 5243942, 13995807, 37439883, 100371907, 269623436, 725638613, 1956352468, 5283171593, 14289645110, 38707131195, 104995130162, 285184002486, 775586517781 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 2..2213 MAPLE h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t), `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m)))) end: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i))) end: A:= (n, k)-> `if`(n<2, n, b(n-1\$2, k)): a:= n-> (k-> A(n, k)-A(n, k-1))(2): seq(a(n), n=2..32); MATHEMATICA h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]]; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]]; A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]]; a[n_] := A[n, 2] - A[n, 1]; Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Dec 01 2023, after Alois P. Heinz *) CROSSREFS Column k=2 of A318758. Sequence in context: A076859 A042833 A048654 * A318817 A122626 A135025 Adjacent sequences: A318856 A318857 A318858 * A318860 A318861 A318862 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 21:52 EST 2024. Contains 370219 sequences. (Running on oeis4.)