login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318859
Number of rooted trees with n nodes such that two equals the maximal number of isomorphic subtrees extending from the same node.
3
0, 1, 1, 4, 9, 22, 54, 138, 346, 889, 2285, 5928, 15436, 40424, 106230, 280305, 741912, 1969816, 5243942, 13995807, 37439883, 100371907, 269623436, 725638613, 1956352468, 5283171593, 14289645110, 38707131195, 104995130162, 285184002486, 775586517781
OFFSET
2,4
LINKS
MAPLE
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(2):
seq(a(n), n=2..32);
MATHEMATICA
h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t],
If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
a[n_] := A[n, 2] - A[n, 1];
Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Dec 01 2023, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A318758.
Sequence in context: A076859 A042833 A048654 * A318817 A122626 A135025
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 04 2018
STATUS
approved