Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 04 2019 10:39:48
%S 1,1,2,4,7,13,24,43,82,151,285,535,1005,1883,3533,6631,12460,23407,
%T 43952,82538,154999,291088,546674,1026687,1928118,3621017,6800300,
%U 12771086,23984329,45042959,84591339,158863807,298348613,560303342,1052258402,1976157510
%N Number of integer compositions of n that have only one part or whose consecutive parts are coprime and the last and first part are also coprime.
%H Andrew Howroyd, <a href="/A318748/b318748.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = A328609(n) + 1 for n > 1. - _Andrew Howroyd_, Nov 01 2019
%e The a(5) = 13 compositions with adjacent parts coprime:
%e (5)
%e (41) (14) (32) (23)
%e (311) (131) (113)
%e (2111) (1211) (1121) (1112)
%e (11111)
%e Missing from this list are (221), (212), and (122).
%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,And@@CoprimeQ@@@Partition[#,2,1,1]]&]],{n,20}]
%o (PARI)
%o b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
%o seq(n)={concat([1], vector(n, i, i > 1) + sum(k=1, n, b(n, k, (i, j)->gcd(i, j)==1)))} \\ _Andrew Howroyd_, Nov 01 2019
%Y Cf. A000740, A008965, A059966, A100953, A167606, A296302, A318726, A318727, A318728, A318745, A328609.
%K nonn
%O 0,3
%A _Gus Wiseman_, Sep 02 2018
%E a(21)-a(35) from _Alois P. Heinz_, Sep 02 2018
%E Name corrected by _Gus Wiseman_, Nov 04 2019