login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318745
Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and adjacent parts (including the last with the first part) being coprime.
7
1, 1, 2, 3, 5, 7, 12, 19, 32, 53, 94, 158, 279, 480, 847, 1487, 2647, 4676, 8349, 14865, 26630, 47700, 85778, 154290, 278318, 502437, 908880, 1645713, 2984546, 5417743, 9847189, 17914494, 32625523, 59467893, 108493134, 198089610, 361965238, 661883231, 1211161991
OFFSET
1,3
LINKS
FORMULA
a(n) = A328669(n) + 1 for n > 1. - Andrew Howroyd, Nov 01 2019
EXAMPLE
The a(7) = 12 Lyndon compositions with adjacent parts coprime:
(7)
(16) (25) (34)
(115)
(1114) (1213) (1132) (1123)
(11113) (11212)
(111112)
MATHEMATICA
LyndonQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Or[Length[#]==1, LyndonQ[#]&&And@@CoprimeQ@@@Partition[#, 2, 1, 1]]&]], {n, 20}]
PROG
(PARI)
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->gcd(i, j)==1))); vector(n, n, (n > 1) + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 02 2018
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018
STATUS
approved