login
Expansion of Product_{k>=1} (1 + k*x^k)^sigma(k), where sigma = A000203.
2

%I #9 Aug 28 2018 13:00:48

%S 1,1,6,18,52,142,404,1018,2624,6645,16124,38857,92245,214841,494098,

%T 1125062,2522188,5604930,12327860,26838595,57913194,123951482,

%U 263019720,553989989,1158449522,2405179547,4961047246,10168544537,20714279168,41952595411,84494479578

%N Expansion of Product_{k>=1} (1 + k*x^k)^sigma(k), where sigma = A000203.

%H Vaclav Kotesovec, <a href="/A318484/b318484.txt">Table of n, a(n) for n = 0..10000</a>

%t nmax = 40; CoefficientList[Series[Product[(1+k*x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 40; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[1, k], j]*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x]

%Y Cf. A000203, A022629, A266891, A318416, A107742, A192065, A318483.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Aug 27 2018