login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318413
Expansion of Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k))^(i*j*k).
6
1, 1, 7, 16, 61, 130, 429, 945, 2684, 5990, 15530, 34313, 83995, 183070, 427046, 919480, 2067589, 4384678, 9577536, 20019243, 42664087, 87954522, 183573639, 373430131, 765524808, 1537737243, 3102614407, 6159028445, 12252086879, 24051526041, 47239506797, 91765428710, 178156003047
OFFSET
0,3
LINKS
Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k*tau_3(k)), where tau_3() = A007425.
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^2 * Sum_{j|d} tau(j) ) * x^k/k), where tau() = A000005.
Conjecture: log(a(n)) ~ (3*Zeta(3))^(1/3) * log(n)^(2/3) * n^(2/3) / 2. - Vaclav Kotesovec, Sep 02 2018
MAPLE
a:=series(mul(mul(mul(1/(1-x^(i*j*k))^(i*j*k), k=1..55), j=1..55), i=1..55), x=0, 33): seq(coeff(a, x, n), n=0..32); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 32; CoefficientList[Series[Product[Product[Product[1/(1 - x^(i j k))^(i j k), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(k Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[Exp[Sum[Sum[d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
nmax = 50; A034718 = Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[A034718[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2018 *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 26 2018
STATUS
approved