login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of modular form for elliptic curve "108a1": y^2 = x^3 + 4 divided by q in powers of q^6.
1

%I #10 Jan 03 2024 23:47:49

%S 1,5,-7,-1,-5,-4,-1,8,18,0,-13,11,17,-13,0,-35,5,-7,2,0,-11,20,-5,-7,

%T 0,23,14,17,36,-25,-19,0,-25,17,0,29,-20,-28,-22,0,-31,7,0,-5,0,-1,26,

%U 32,-17,0,40,-16,-13,0,35,-31,29,55,23,0,-18,-31,-25,-37,0

%N Coefficients of modular form for elliptic curve "108a1": y^2 = x^3 + 4 divided by q in powers of q^6.

%H Robin Visser, <a href="/A318375/b318375.txt">Table of n, a(n) for n = 0..10000</a>

%H LMFDB, <a href="http://www.lmfdb.org/EllipticCurve/Q/108/a/2">Elliptic Curve 108.a2 (Cremona label 108a1)</a>.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 108 (t/i)^2 f(t) where q = exp(2 Pi i t).

%F a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p>5, where b(p) = p minus number of points of elliptic curve modulo p.

%e G.f. = 1 + 5*x - 7*x^2 - x^3 - 5*x^4 - 4*x^5 - x^6 + 8*x^7 + ...

%e G.f. = q + 5*q^7 - 7*q^13 - q^19 - 5*q^25 - 4*q^31 - q^37 + ...

%t a[ n_] := Module[ {x, y, p, e}, If[ n < 1, Boole[n == 0], Times @@ ( If[ # < 5, 0, {p, e} = {##}; p^(e/2) ChebyshevU[ e, -Sum[ KroneckerSymbol[ k^3 + 4, p], {k, p}] *p^(-1/2) / 2 ]] & @@@ FactorInteger@(6 n + 1) )]];

%o (PARI) {a(n) = if( n<0, 0, n = 6*n + 1; ellan(ellinit([0, 0, 0, 0, 4]), n)[n])};

%o (PARI) {a(n) = my(A, p, e, y='y); if( n<0, 0, A = factor(6*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, substpol( polchebyshev(e, 2, -1/2/y * sum(k=1, p, kronecker(k^3 + 4, p))) * y^e, y^2, p))))};

%o (Magma) qExpansion( ModularForm( EllipticCurve( [0, 0, 0, 0, 4])), 386);

%o (Magma) A := Basis( CuspForms( Gamma0(108), 2), 386); A[1] + 5*A[6] - 7*A[9] - A[10];

%o (Sage)

%o def a(n):

%o return EllipticCurve("108a1").an(6*n+1) # _Robin Visser_, Jan 03 2024

%K sign

%O 0,2

%A _Michael Somos_, Aug 24 2018