login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318375
Coefficients of modular form for elliptic curve "108a1": y^2 = x^3 + 4 divided by q in powers of q^6.
1
1, 5, -7, -1, -5, -4, -1, 8, 18, 0, -13, 11, 17, -13, 0, -35, 5, -7, 2, 0, -11, 20, -5, -7, 0, 23, 14, 17, 36, -25, -19, 0, -25, 17, 0, 29, -20, -28, -22, 0, -31, 7, 0, -5, 0, -1, 26, 32, -17, 0, 40, -16, -13, 0, 35, -31, 29, 55, 23, 0, -18, -31, -25, -37, 0
OFFSET
0,2
FORMULA
G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 108 (t/i)^2 f(t) where q = exp(2 Pi i t).
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p>5, where b(p) = p minus number of points of elliptic curve modulo p.
EXAMPLE
G.f. = 1 + 5*x - 7*x^2 - x^3 - 5*x^4 - 4*x^5 - x^6 + 8*x^7 + ...
G.f. = q + 5*q^7 - 7*q^13 - q^19 - 5*q^25 - 4*q^31 - q^37 + ...
MATHEMATICA
a[ n_] := Module[ {x, y, p, e}, If[ n < 1, Boole[n == 0], Times @@ ( If[ # < 5, 0, {p, e} = {##}; p^(e/2) ChebyshevU[ e, -Sum[ KroneckerSymbol[ k^3 + 4, p], {k, p}] *p^(-1/2) / 2 ]] & @@@ FactorInteger@(6 n + 1) )]];
PROG
(PARI) {a(n) = if( n<0, 0, n = 6*n + 1; ellan(ellinit([0, 0, 0, 0, 4]), n)[n])};
(PARI) {a(n) = my(A, p, e, y='y); if( n<0, 0, A = factor(6*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, substpol( polchebyshev(e, 2, -1/2/y * sum(k=1, p, kronecker(k^3 + 4, p))) * y^e, y^2, p))))};
(Magma) qExpansion( ModularForm( EllipticCurve( [0, 0, 0, 0, 4])), 386);
(Magma) A := Basis( CuspForms( Gamma0(108), 2), 386); A[1] + 5*A[6] - 7*A[9] - A[10];
(Sage)
def a(n):
return EllipticCurve("108a1").an(6*n+1) # Robin Visser, Jan 03 2024
CROSSREFS
Sequence in context: A021179 A153613 A356706 * A023571 A160631 A155066
KEYWORD
sign
AUTHOR
Michael Somos, Aug 24 2018
STATUS
approved