The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318264 Expansion of Product_{k>=1} (1 + C(k)*x^k), where C(k) is the Catalan number A000108. 4
 1, 1, 2, 7, 19, 66, 212, 743, 2487, 9012, 31177, 113775, 404584, 1490726, 5376676, 20028981, 73068861, 273659672, 1009921813, 3801386137, 14125670266, 53477758556, 199950414035, 759566205693, 2857261603610, 10889590477287, 41136917417501, 157329747348492 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1650 FORMULA a(n) ~ c * A000108(n) ~ c * 4^n / (sqrt(Pi) * n^(3/2)), where c = Product_{k>=1} (1 + C(k)/4^k) = 2.608465265690846547082817204714986077801494... - Vaclav Kotesovec, Aug 24 2018 MAPLE C:= proc(n) option remember; binomial(n+n, n)/(n+1) end: b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n\$2): seq(a(n), n=0..30); # Alois P. Heinz, Aug 23 2019 MATHEMATICA nmax = 40; CoefficientList[Series[Product[1+CatalanNumber[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 40; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += CatalanNumber[k]*poly[[j - k + 1]], {j, nmax, k, -1}]; , {k, 2, nmax}]; poly CROSSREFS Cf. A000108, A022629, A179381, A318248, A318263. Sequence in context: A275289 A151430 A083309 * A164979 A243279 A362097 Adjacent sequences: A318261 A318262 A318263 * A318265 A318266 A318267 KEYWORD nonn AUTHOR Vaclav Kotesovec, Aug 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 01:50 EDT 2024. Contains 372782 sequences. (Running on oeis4.)