login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Worpitzky numbers W_{m}(n,k) for m = 2, n >= 0 and 0 <= k <= n, triangle read by rows.
1

%I #18 Feb 18 2019 06:20:58

%S 1,-1,1,5,-11,6,-61,211,-240,90,1385,-6551,11466,-8820,2520,-50521,

%T 303271,-719580,844830,-491400,113400,2702765,-19665491,58998126,

%U -93511440,82661040,-38669400,7484400,-199360981,1704396331,-6187282920,12372329970,-14727913200,10443232800,-4086482400,681080400

%N Generalized Worpitzky numbers W_{m}(n,k) for m = 2, n >= 0 and 0 <= k <= n, triangle read by rows.

%C The triangle can be seen as a member of a family of generalized Worpitzky numbers A028246. See the cross-references for some other members.

%C The unsigned numbers have row sums A210657 which points to an interpretation of the unsigned numbers as a refinement of marked Schröder paths (see Josuat-Vergès and Kim).

%H Matthieu Josuat-Vergès and Jang Soo Kim, <a href="http://arxiv.org/abs/1101.5608">Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity</a>, arXiv:1101.5608 [math.CO], 2011.

%F Let S(n, k) denote Joffe's central differences of zero (A241171) extended to the case n = 0 and k = 0 by prepending a column 1, 0, 0, 0,... to the triangle, then:

%F T(n,k) = Sum_{j=0..k}((-1)^(k-j)*C(n-j,n-k)*Sum_{i=0..n}((-1)^i*S(n,i)*C(n-i,j))).

%e [0] [ 1]

%e [1] [ -1, 1]

%e [2] [ 5, -11, 6]

%e [3] [ -61, 211, -240, 90]

%e [4] [ 1385, -6551, 11466, -8820, 2520]

%e [5] [ -50521, 303271, -719580, 844830, -491400, 113400]

%e [6] [2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400]

%p Joffe := proc(n, k) option remember; if k > n then 0 elif k = 0 then k^n else

%p k*(2*k-1)*Joffe(n-1, k-1)+k^2*Joffe(n-1, k) fi end:

%p T := (n, k) -> add((-1)^(k-j)*binomial(n-j, n-k)*add((-1)^i*Joffe(n,i)*

%p binomial(n-i, j), i=0..n), j=0..k):

%p seq(seq(T(n, k), k=0..n), n=0..6);

%t Joffe[0, 0] = 1; Joffe[n_, k_] := Joffe[n, k] = If[k>n, 0, If[k == 0,k^n, k*(2*k-1)*Joffe[n-1, k-1] + k^2*Joffe[n-1, k]]];

%t T[n_, k_] := Sum[(-1)^(k-j)*Binomial[n-j, n-k]*Sum[(-1)^i*Joffe[n, i]* Binomial[n-i, j], {i, 0, n}], {j, 0, k}];

%t Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 18 2019, from Maple *)

%o (Sage)

%o def EW(m, n):

%o @cached_function

%o def S(m, n):

%o R.<x> = ZZ[]

%o if n == 0: return R(1)

%o return R(sum(binomial(m*n, m*k)*S(m, n-k)*x for k in (1..n)))

%o s = S(m, n).list()

%o c = lambda k: sum((-1)^(k-j)*binomial(n-j,n-k)*

%o sum((-1)^i*s[i]*binomial(n-i,j) for i in (0..n)) for j in (0..k))

%o return [c(k) for k in (0..n)]

%o def A318259row(n): return EW(2, n)

%o flatten([A318259row(n) for n in (0..6)])

%Y Row sums are A000007, alternating row sums are A210657.

%Y Cf. T(n,n) = A000680, T(n, 0) = A028296(n) (Gudermannian), A000364 (Euler secant), A241171 (Joffe's differences), A028246 (Worpitzky).

%Y Cf. A167374 (m=0), A028246 & A163626 (m=1), this seq (m=2), A318260 (m=3).

%K sign,tabl

%O 0,4

%A _Peter Luschny_, Sep 06 2018