login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318259
Generalized Worpitzky numbers W_{m}(n,k) for m = 2, n >= 0 and 0 <= k <= n, triangle read by rows.
1
1, -1, 1, 5, -11, 6, -61, 211, -240, 90, 1385, -6551, 11466, -8820, 2520, -50521, 303271, -719580, 844830, -491400, 113400, 2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400, -199360981, 1704396331, -6187282920, 12372329970, -14727913200, 10443232800, -4086482400, 681080400
OFFSET
0,4
COMMENTS
The triangle can be seen as a member of a family of generalized Worpitzky numbers A028246. See the cross-references for some other members.
The unsigned numbers have row sums A210657 which points to an interpretation of the unsigned numbers as a refinement of marked Schröder paths (see Josuat-Vergès and Kim).
LINKS
Matthieu Josuat-Vergès and Jang Soo Kim, Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity, arXiv:1101.5608 [math.CO], 2011.
FORMULA
Let S(n, k) denote Joffe's central differences of zero (A241171) extended to the case n = 0 and k = 0 by prepending a column 1, 0, 0, 0,... to the triangle, then:
T(n,k) = Sum_{j=0..k}((-1)^(k-j)*C(n-j,n-k)*Sum_{i=0..n}((-1)^i*S(n,i)*C(n-i,j))).
EXAMPLE
[0] [ 1]
[1] [ -1, 1]
[2] [ 5, -11, 6]
[3] [ -61, 211, -240, 90]
[4] [ 1385, -6551, 11466, -8820, 2520]
[5] [ -50521, 303271, -719580, 844830, -491400, 113400]
[6] [2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400]
MAPLE
Joffe := proc(n, k) option remember; if k > n then 0 elif k = 0 then k^n else
k*(2*k-1)*Joffe(n-1, k-1)+k^2*Joffe(n-1, k) fi end:
T := (n, k) -> add((-1)^(k-j)*binomial(n-j, n-k)*add((-1)^i*Joffe(n, i)*
binomial(n-i, j), i=0..n), j=0..k):
seq(seq(T(n, k), k=0..n), n=0..6);
MATHEMATICA
Joffe[0, 0] = 1; Joffe[n_, k_] := Joffe[n, k] = If[k>n, 0, If[k == 0, k^n, k*(2*k-1)*Joffe[n-1, k-1] + k^2*Joffe[n-1, k]]];
T[n_, k_] := Sum[(-1)^(k-j)*Binomial[n-j, n-k]*Sum[(-1)^i*Joffe[n, i]* Binomial[n-i, j], {i, 0, n}], {j, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2019, from Maple *)
PROG
(Sage)
def EW(m, n):
@cached_function
def S(m, n):
R.<x> = ZZ[]
if n == 0: return R(1)
return R(sum(binomial(m*n, m*k)*S(m, n-k)*x for k in (1..n)))
s = S(m, n).list()
c = lambda k: sum((-1)^(k-j)*binomial(n-j, n-k)*
sum((-1)^i*s[i]*binomial(n-i, j) for i in (0..n)) for j in (0..k))
return [c(k) for k in (0..n)]
def A318259row(n): return EW(2, n)
flatten([A318259row(n) for n in (0..6)])
CROSSREFS
Row sums are A000007, alternating row sums are A210657.
Cf. T(n,n) = A000680, T(n, 0) = A028296(n) (Gudermannian), A000364 (Euler secant), A241171 (Joffe's differences), A028246 (Worpitzky).
Cf. A167374 (m=0), A028246 & A163626 (m=1), this seq (m=2), A318260 (m=3).
Sequence in context: A019305 A274266 A365726 * A304935 A156274 A079778
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Sep 06 2018
STATUS
approved