login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318162
Number of compositions of 2n-1 into exactly 2n-1 nonnegative parts with largest part n.
2
1, 6, 50, 392, 2970, 22022, 160888, 1162800, 8335338, 59366450, 420630210, 2967563040, 20861295000, 146203657992, 1021964428880, 7127260128736, 49606676100234, 344658278690250, 2390849931605590, 16561583202364200, 114577083158683530, 791757148201073670
OFFSET
1,2
LINKS
FORMULA
a(n) = A180281(2n-1,n).
For n>1, a(n) = 2*(2*n - 1) * binomial(3*n - 4, n-2). - Vaclav Kotesovec, Sep 20 2019
EXAMPLE
a(1) = 1: 1.
a(2) = 6: 012, 021, 102, 120, 201, 210.
a(3) = 50: 00023, 00032, 00113, 00131, 00203, 00230, 00302, 00311, 00320, 01013, 01031, 01103, 01130, 01301, 01310, 02003, 02030, 02300, 03002, 03011, 03020, 03101, 03110, 03200, 10013, 10031, 10103, 10130, 10301, 10310, 11003, 11030, 11300, 13001, 13010, 13100, 20003, 20030, 20300, 23000, 30002, 30011, 30020, 30101, 30110, 30200, 31001, 31010, 31100, 32000.
MAPLE
a:= proc(n) option remember; (2*n-1)*`if`(n<3, n,
3*(3*n-4)*(3*n-5)*a(n-1)/(2*(n-1)*(2*n-3)^2))
end:
seq(a(n), n=1..30);
MATHEMATICA
Flatten[{1, Table[2*(2*n - 1)*Binomial[3*n - 4, n-2], {n, 2, 20}]}] (* Vaclav Kotesovec, Sep 20 2019 *)
CROSSREFS
Bisection of A318160 (odd part).
Cf. A180281.
Sequence in context: A223816 A180880 A308860 * A027330 A090409 A212233
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 19 2018
STATUS
approved