login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = a(2) = 1; for n >= 3, a(n) = a(t(n)) + a(n-t(n)) where t = A000195.
1

%I #14 Aug 01 2018 03:12:31

%S 1,1,2,3,4,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,15,16,16,17,

%T 18,18,19,20,20,21,22,22,23,24,24,25,26,26,27,28,28,29,30,30,31,32,32,

%U 33,34,34,35,36,37,37,38,39,40,40,41,42,43,43,44,45,46,46,47,48,49,49,50,51,52

%N a(1) = a(2) = 1; for n >= 3, a(n) = a(t(n)) + a(n-t(n)) where t = A000195.

%C This sequence hits every positive integer.

%H Altug Alkan, <a href="/A317442/a317442_1.png">A log plot of a(n)/n</a>

%F a(n+1) - a(n) = 0 or 1 for all n >= 1.

%t Nest[Function[{a, n}, Append[a, a[[Floor@ Log@ n]] + a[[n - Floor@ Log@ n]] ] ] @@ {#, Length@ # + 1} &, {1, 1}, 74] (* _Michael De Vlieger_, Jul 30 2018 *)

%o (PARI) q=vector(100); for(n=1, 2, q[n]=1); for(n=3, #q, q[n]=q[floor(log(n))] + q[n-floor(log(n))]); q

%Y Cf. A000195, A316434.

%K nonn

%O 1,3

%A _Altug Alkan_, Jul 28 2018