|
|
A317398
|
|
Positive integers that have exactly eight representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
|
|
2
|
|
|
2991, 3004, 3319, 3554, 3928, 4846, 5552, 5886, 6293, 6784, 7183, 7286, 7396, 7668, 7741, 7743, 7829, 7996, 8095, 8121, 8212, 8477, 8586, 8614, 8856, 8861, 9096, 9307, 9374, 9591, 9626, 9636, 9637, 9721, 9738, 9845, 9891, 9912, 9934, 10011, 10024, 10048, 10251
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0;
for p in numtheory[factorset](n-1) minus s while r<9
do r:= r+b((n-1)/p, s union {p}) od; `if`(r<9, r, 9)
fi
end:
a:= proc(n) option remember; local k; for k from
`if`(n=1, 1, 1+a(n-1)) while b(k, {})<>8 do od; k
end:
seq(a(n), n=1..100);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|