login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317398
Positive integers that have exactly eight representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
2
2991, 3004, 3319, 3554, 3928, 4846, 5552, 5886, 6293, 6784, 7183, 7286, 7396, 7668, 7741, 7743, 7829, 7996, 8095, 8121, 8212, 8477, 8586, 8614, 8856, 8861, 9096, 9307, 9374, 9591, 9626, 9636, 9637, 9721, 9738, 9845, 9891, 9912, 9934, 10011, 10024, 10048, 10251
OFFSET
1,1
LINKS
FORMULA
A317241(a(n)) = 8.
MAPLE
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0;
for p in numtheory[factorset](n-1) minus s while r<9
do r:= r+b((n-1)/p, s union {p}) od; `if`(r<9, r, 9)
fi
end:
a:= proc(n) option remember; local k; for k from
`if`(n=1, 1, 1+a(n-1)) while b(k, {})<>8 do od; k
end:
seq(a(n), n=1..100);
CROSSREFS
Column k=8 of A317390.
Cf. A317241.
Sequence in context: A159731 A221725 A205241 * A346221 A253962 A253955
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 27 2018
STATUS
approved