|
|
A317394
|
|
Positive integers that have exactly four representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
|
|
2
|
|
|
211, 261, 421, 426, 441, 484, 535, 540, 591, 621, 634, 667, 683, 691, 715, 726, 732, 761, 771, 776, 778, 794, 818, 853, 862, 871, 925, 970, 979, 987, 989, 1011, 1021, 1023, 1038, 1074, 1086, 1105, 1114, 1141, 1171, 1176, 1184, 1190, 1197, 1222, 1261, 1266
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0;
for p in numtheory[factorset](n-1) minus s while r<5
do r:= r+b((n-1)/p, s union {p}) od; `if`(r<5, r, 5)
fi
end:
a:= proc(n) option remember; local k; for k from
`if`(n=1, 1, 1+a(n-1)) while b(k, {})<>4 do od; k
end:
seq(a(n), n=1..100);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|