

A317254


a(n) is the smallest integer such that for all s >= a(n), there are at least n1 different partitions of s into n parts, namely {x_{11},x_{12},...,x_{1n}}, {x_{21},x_{22},...,x_{2n}},..., and {x_{n1,1},x_{n1,2},...,x_{n1,n}}, such that the products of every set are equal.


0



19, 23, 23, 26, 27, 29, 31, 32, 35, 36, 38, 40, 42, 44, 45, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 100, 101
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


LINKS

Table of n, a(n) for n=3..60.
Byungchul Cha et al., An Investigation on Partitions with Equal Products, arXiv:1811.07451 [math.NT], 2018.
John B. Kelly, Partitions with equal products, Proc. Amer. Math. Soc. 15 (1964), 987990.


EXAMPLE

a(3)=19. From s=19 onward, there are at least 2 different partitions of s into 3 parts with equal products:
s=19: {12,4,3} & {9,8,2}:
12 + 4 + 3 = 9 + 8 + 2 = 19;
12 * 4 * 3 = 9 * 8 * 2 = 144;
s=20: {15,3,2} & {10,9,1}:
15 + 3 + 2 = 10 + 9 + 1 = 20;
15 * 3 * 2 = 10 * 9 * 1 = 90;
s=21: {16,3,2} & {12,8,1}:
16 + 3 + 2 = 12 + 8 + 1 = 21;
16 * 3 * 2 = 12 * 8 * 1 = 96.


MATHEMATICA

Do[maxsumnotwork = 0; Do[intpart = IntegerPartitions[sum, {n}]; prod = Table[Times @@ intpart[[i]], {i, Length[intpart]}]; prodtally = Tally[prod]; repeatprod = Select[prodtally, #[[2]] >= n  1 &]; If[repeatprod == {}, maxsumnotwork = sum], {sum, 12, 200}]; Print[n, " ", maxsumnotwork + 1], {n, 3, 60}]


CROSSREFS

Cf. A060277, A316945, A316946.
Sequence in context: A303299 A072305 A095222 * A226687 A070299 A159021
Adjacent sequences: A317251 A317252 A317253 * A317255 A317256 A317257


KEYWORD

nonn,more,hard


AUTHOR

Byungchul Cha, Adam Claman, Joshua Harrington, Ziyu Liu, Barbara Maldonado, Alexander M. Miller, Ann Palma, Wing Hong Tony Wong, Hongkwon V. Yi, Jul 25 2018


STATUS

approved



