Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jul 12 2018 11:53:02
%S 0,0,0,0,3,0,0,5,5,0,0,18,4,18,0,0,61,46,46,61,0,0,209,151,410,151,
%T 209,0,0,702,543,2397,2397,543,702,0,0,2381,2120,13970,26845,13970,
%U 2120,2381,0,0,8069,8155,93426,219766,219766,93426,8155,8069,0,0,27330,30205,586718
%N T(n,k)=Number of nXk 0..1 arrays with every element unequal to 2, 3, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
%C Table starts
%C .0....0.....0.......0.........0..........0............0..............0
%C .0....3.....5......18........61........209..........702...........2381
%C .0....5.....4......46.......151........543.........2120...........8155
%C .0...18....46.....410......2397......13970........93426.........586718
%C .0...61...151....2397.....26845.....219766......2442827.......24591846
%C .0..209...543...13970....219766....2605126.....42857655......625815905
%C .0..702..2120...93426...2442827...42857655...1169271436....26888275330
%C .0.2381..8155..586718..24591846..625815905..26888275330...947123604065
%C .0.8069.30205.3677924.242436003.9056077433.613862574233.33009635701375
%H R. H. Hardin, <a href="/A316763/b316763.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
%F k=3: [order 18]
%F k=4: [order 66] for n>67
%e Some solutions for n=5 k=4
%e ..0..0..1..1. .0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..0..1
%e ..1..1..0..0. .0..1..0..1. .1..0..0..1. .1..1..1..1. .1..0..0..0
%e ..0..0..0..1. .0..0..0..0. .0..0..1..0. .1..1..0..0. .1..0..1..0
%e ..0..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..0..0. .0..0..1..1
%e ..1..1..1..0. .0..1..0..1. .0..1..0..1. .1..0..1..1. .1..1..1..0
%Y Column 2 is A303684.
%Y Column 3 is A305170.
%Y Column 4 is A305171.
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Jul 12 2018