login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316763
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 2, 3, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
5
0, 0, 0, 0, 3, 0, 0, 5, 5, 0, 0, 18, 4, 18, 0, 0, 61, 46, 46, 61, 0, 0, 209, 151, 410, 151, 209, 0, 0, 702, 543, 2397, 2397, 543, 702, 0, 0, 2381, 2120, 13970, 26845, 13970, 2120, 2381, 0, 0, 8069, 8155, 93426, 219766, 219766, 93426, 8155, 8069, 0, 0, 27330, 30205, 586718
OFFSET
1,5
COMMENTS
Table starts
.0....0.....0.......0.........0..........0............0..............0
.0....3.....5......18........61........209..........702...........2381
.0....5.....4......46.......151........543.........2120...........8155
.0...18....46.....410......2397......13970........93426.........586718
.0...61...151....2397.....26845.....219766......2442827.......24591846
.0..209...543...13970....219766....2605126.....42857655......625815905
.0..702..2120...93426...2442827...42857655...1169271436....26888275330
.0.2381..8155..586718..24591846..625815905..26888275330...947123604065
.0.8069.30205.3677924.242436003.9056077433.613862574233.33009635701375
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
k=3: [order 18]
k=4: [order 66] for n>67
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..0..1
..1..1..0..0. .0..1..0..1. .1..0..0..1. .1..1..1..1. .1..0..0..0
..0..0..0..1. .0..0..0..0. .0..0..1..0. .1..1..0..0. .1..0..1..0
..0..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..0..0. .0..0..1..1
..1..1..1..0. .0..1..0..1. .0..1..0..1. .1..0..1..1. .1..1..1..0
CROSSREFS
Column 2 is A303684.
Column 3 is A305170.
Column 4 is A305171.
Sequence in context: A304156 A305509 A305175 * A304065 A305457 A305022
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 12 2018
STATUS
approved