login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316518
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 21, 21, 8, 16, 49, 28, 49, 16, 32, 120, 75, 75, 120, 32, 64, 293, 174, 204, 174, 293, 64, 128, 719, 414, 619, 619, 414, 719, 128, 256, 1774, 1002, 1710, 2995, 1710, 1002, 1774, 256, 512, 4389, 2398, 4894, 11977, 11977, 4894, 2398, 4389, 512, 1024
OFFSET
1,2
COMMENTS
Table starts
...1....2....4.....8.....16.......32........64........128..........256
...2....8...21....49....120......293.......719.......1774.........4389
...4...21...28....75....174......414......1002.......2398.........5743
...8...49...75...204....619.....1710......4894......14053........40063
..16..120..174...619...2995....11977.....48677.....201771.......826524
..32..293..414..1710..11977....73031....432088....2685906.....16394959
..64..719.1002..4894..48677...432088...3646656...32938897....290133839
.128.1774.2398.14053.201771..2685906..32938897..442204876...5767984330
.256.4389.5743.40063.826524.16394959.290133839.5767984330.110715247064
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=3: a(n) = a(n-1) +2*a(n-2) +3*a(n-3) +a(n-4) -a(n-5) for n>8
k=4: [order 10] for n>13
k=5: [order 25] for n>28
k=6: [order 44] for n>49
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..1..0..0. .0..1..1..1. .0..0..0..0. .0..0..0..0
..0..1..1..1. .1..1..1..0. .0..1..1..1. .0..0..0..0. .0..0..1..0
..1..1..1..1. .1..1..1..1. .1..0..1..1. .0..0..0..0. .0..0..1..0
..1..1..0..1. .1..1..1..1. .1..1..1..1. .0..1..0..0. .0..0..0..0
..0..0..1..1. .1..1..1..1. .0..1..1..0. .1..0..0..1. .0..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A303721.
Sequence in context: A303727 A305230 A304775 * A304472 A316289 A306053
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 05 2018
STATUS
approved