login
A316516
Number of nX6 0..1 arrays with every element unequal to 0, 1, 2, 3, 7 or 8 king-move adjacent elements, with upper left element zero.
1
32, 293, 414, 1710, 11977, 73031, 432088, 2685906, 16394959, 100310467, 615744672, 3771757566, 23116329861, 141693552057, 868366497790, 5322160848818, 32619013128821, 199916371379453, 1225262913088380, 7509471969896978
OFFSET
1,1
COMMENTS
Column 6 of A316518.
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) -5*a(n-2) +15*a(n-3) -134*a(n-4) +191*a(n-5) -141*a(n-6) +430*a(n-7) +579*a(n-8) -3240*a(n-9) +292*a(n-10) +2930*a(n-11) +5065*a(n-12) -247*a(n-13) -15428*a(n-14) +643*a(n-15) +8666*a(n-16) +11550*a(n-17) +2491*a(n-18) -19726*a(n-19) -5047*a(n-20) -379*a(n-21) +13161*a(n-22) +15847*a(n-23) -11738*a(n-24) -14543*a(n-25) -3102*a(n-26) +10826*a(n-27) +13364*a(n-28) -6963*a(n-29) -12553*a(n-30) +4495*a(n-31) +3122*a(n-32) +946*a(n-33) +56*a(n-34) -2673*a(n-35) +1326*a(n-36) +128*a(n-37) -299*a(n-38) +207*a(n-39) -222*a(n-40) +80*a(n-41) +12*a(n-42) +4*a(n-43) +8*a(n-44) for n>49
EXAMPLE
Some solutions for n=5
..0..0..0..0..0..0. .0..1..1..1..0..0. .0..1..1..1..1..0. .0..0..1..1..0..0
..0..0..0..1..0..0. .1..1..0..1..1..0. .1..1..1..0..1..1. .1..1..0..1..1..0
..0..0..0..0..0..0. .1..0..1..1..1..1. .1..1..1..1..1..1. .1..1..1..1..1..1
..1..0..0..1..0..0. .1..1..1..0..0..1. .1..1..0..1..0..1. .1..1..1..0..1..1
..1..1..0..0..0..0. .0..1..1..1..1..1. .0..1..1..1..1..1. .1..1..1..1..0..0
CROSSREFS
Cf. A316518.
Sequence in context: A303725 A305228 A304773 * A304470 A316287 A306051
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 05 2018
STATUS
approved