login
A316190
a(n) is the distance between n and the nearest prime power (in the sense of A246655) other than n.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 3, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3
OFFSET
1,11
REFERENCES
S. M. Gonek, A formula of Landau and mean values of Zeta(s), Topics in Analytic Number Theory, ed. by S. W. Graham and J. D. Vaaler, 92-97, Univ. Texas Press 1985.
S. M. Gonek, An explicit formula of Landau and its applications to the theory of the zeta-function, Contemporary Math. 143 (1993), 395-413.
LINKS
E. Landau, Über die Nullstellen der Zetafunktion, Math. Annalen 71, 548-564, (1911).
EXAMPLE
Note that 1369, 1373, 1381 and 1399 are prime powers. This leads to the mapping:
1373 -> 4,
1374 -> 1,
1375 -> 2,
1376 -> 3,
1377 -> 4,
1378 -> 3,
1379 -> 2,
1380 -> 1,
1381 -> 8.
MAPLE
A316190_list := proc(N) local a, b, d, m, k, P, R; R := NULL; m := 1;
P := select(t -> nops(numtheory:-factorset(t)) = 1 or t = 0, [$0..N]);
for k from 1 to nops(P)-1 do
a := P[k]; b := P[k+1];
if m = a then
R := R, min(m - P[k-1] , b - m);
m := m + 1;
fi;
while m < b do
R := R, min(m - a , b - m);
m := m + 1;
od;
od; [R] end:
A316190_list(100);
MATHEMATICA
a[n_] := Module[{k = 1}, While[!PrimePowerQ[n+k] && !PrimePowerQ[n-k], k++]; k]; Array[a, 100] (* Jean-François Alcover, Jul 25 2019 *)
CROSSREFS
Sequence in context: A111620 A111628 A161974 * A358236 A330738 A025921
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 26 2018
STATUS
approved