login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316096
Numbers n such that A(n+1) = A(n) + 4, where A() = A005101() are the abundant numbers.
2
3, 6, 11, 13, 17, 18, 21, 24, 25, 32, 35, 40, 43, 46, 47, 50, 53, 60, 63, 64, 69, 72, 75, 78, 85, 88, 91, 94, 95, 100, 105, 106, 109, 112, 115, 117, 121, 124, 127, 130, 132, 136, 139, 140, 147, 148, 151, 154, 157, 159, 165, 168, 171, 176, 177, 180, 181, 184
OFFSET
1,1
FORMULA
Sequence is { n | A005101(n+1) = A005101(n) + 4 }.
Sequence is { n | A125115(n) = 4 }.
MAPLE
with(numtheory): A:=select(n->sigma(n)>2*n, [$1..1000]): a:=select(j->A[j+1]=A[j]+4, [$1..nops(A)-1]);
MATHEMATICA
Position[Map[{#1, #2 - 4} & @@ # &, Partition[Select[Range[10^3], DivisorSigma[1, #] > 2 # &], 2, 1]], _?(SameQ @@ # &)][[All, 1]] (* Michael De Vlieger, Jun 29 2018 *)
PROG
(GAP) A:=Filtered([1..1000], n->Sigma(n)>2*n);; a:=Filtered([1..Length(A)-1], i->A[i+1]=A[i]+4);
CROSSREFS
A316098 is the main sequence for this entry.
Numbers n such that A(n+1) = A(n) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), A316095 (k=3), this sequence (k=4), A316097 (k=6).
Cf. A005101.
Sequence in context: A073942 A310089 A310090 * A310091 A136981 A316317
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Jun 25 2018
STATUS
approved