login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309968
Numbers n > 1 that give record values for f(n) = sigma(n)/n - e^gamma * log(log(e*d(n))) - e^gamma * log(log(log(e^e * d(n)))), where d(n) is the number of divisors of n (A000005) and sigma(n) is their sum (A000203).
1
2, 74801040398884800, 224403121196654400, 3066842656354276800, 6133685312708553600, 9200527969062830400, 18401055938125660800, 131874234223233902400, 263748468446467804800, 395622702669701707200, 791245405339403414400, 6198089008491993412800, 12396178016983986825600
OFFSET
1,1
COMMENTS
Nicolas proved that f(n) reaches its maximum at n = 2^7 * (3#)^4 * 5# * (7#)^2 * 19# * 47# * 277# * 45439# ~ 8.0244105... * 10^19786 which is the last term of this sequence (prime(n)# = A002110(n) is the n-th primorial).
LINKS
Jean-Louis Nicolas, Quelques inégalités effectives entre des fonctions arithmétiques usuelles, Functiones et Approximatio, Vol. 39, No. 2 (2008), pp. 315-334. See Theorem 1.2.
CROSSREFS
Subsequence of A025487.
Sequence in context: A257229 A176944 A068138 * A082566 A273400 A371468
KEYWORD
nonn,fini
AUTHOR
Amiram Eldar, Aug 25 2019
STATUS
approved