login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309944 Numbers m such that if m = p_1^e_1 * ... * p_k^e_k, where p_1 < ... < p_k are primes, then for all i < k, p_i = A000720(p_{i+1}). 0
6, 12, 15, 18, 24, 30, 36, 45, 48, 54, 55, 60, 72, 75, 90, 96, 108, 119, 120, 135, 144, 150, 162, 165, 180, 192, 216, 225, 240, 270, 275, 288, 300, 324, 330, 341, 360, 375, 384, 405, 432, 450, 480, 486, 495, 533, 540, 576, 600, 605, 648, 660, 675, 720, 750, 768 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers m such that for all k, d(k) = prime(d(k-1)), where d(k) is the k-th prime factor of m.

The primitive subsequence b(k), k = 1, 2, ... begins with 6, 15, 30, 55, 110, 165, 330, 341, 533, ... because if d(i) is the i-th prime factor of b(k), so b(k)*d(i)^m is in the sequence, m = 0, 1, 2, ...

Numbers m such that if m = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then for all i > 1, p_i = A000040(p_{i-1}). - Antti Karttunen, Aug 24 2019

LINKS

Table of n, a(n) for n=1..56.

Index entries for sequences computed from indices in prime factorization

EXAMPLE

330 is in the sequence because the prime factors are {2, 3, 5, 11} with 3 = prime(2), 5 = prime(3) and 11 = prime(5).

1299210 is in the sequence because the prime factors are {2, 3, 5, 11, 31, 127} with 3 = prime(2), 5 = prime(3), 11 = prime(5), 31 = prime(11) and 127 = prime(31).

MAPLE

with(numtheory):nn:=10^3:

for n from 1 to nn do:

d:=factorset(n):n0:=nops(d):it:=0:

  if n0>1

  then

  for i from 2 to n0 do :

   if d[i]=ithprime(d[i-1])

    then

    it:=it+1:

    else fi:

   od:

    if it=n0-1

    then

    printf(`%d, `, n):

    else fi:fi:

od:

MATHEMATICA

aQ[n_] := (m = Length[(p = FactorInteger[n][[;; , 1]])]) > 1 && NestList[Prime@# &, p[[1]], m - 1] == p; Select[Range[770], aQ] (* Amiram Eldar, Aug 24 2019 *)

PROG

(MAGMA) sol:=[]; s:=1; for m in [2..1000] do v:=PrimeDivisors(m);  if #v ge 2 then nr:=0; for k in [2..#v] do  if v[k] eq NthPrime(v[k-1])  then nr:=nr+1;  end if; end for; if nr eq #v-1 then sol[s]:=m; s:=s+1; end if; end if; end for;  sol; // Marius A. Burtea, Aug 24 2019

(PARI) isok(m) = {my(f=factor(m)[, 1]~); if (#f < 2, return(0)); for (i=2, #f, if (f[i] != prime(f[i-1]), return (0)); ); return (1); } \\ Michel Marcus, Aug 25 2019

CROSSREFS

Cf. A000040, A000720, A006450, A027746, A027748

Contains A033845, A033849, A143207.

Sequence in context: A324771 A104210 A066312 * A212308 A089341 A256617

Adjacent sequences:  A309941 A309942 A309943 * A309945 A309946 A309947

KEYWORD

nonn

AUTHOR

Michel Lagneau, Aug 24 2019

EXTENSIONS

Edited by N. J. A. Sloane, Oct 05 2019, using definition suggested by Antti Karttunen, Aug 24 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 08:33 EDT 2021. Contains 346294 sequences. (Running on oeis4.)