login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309912
a(n) = Product_{p prime, p <= n} floor(n/p).
0
1, 1, 1, 1, 2, 2, 6, 6, 8, 12, 30, 30, 48, 48, 112, 210, 240, 240, 324, 324, 480, 840, 1848, 1848, 2304, 2880, 6240, 7020, 10080, 10080, 14400, 14400, 15360, 25344, 53856, 78540, 90720, 90720, 191520, 311220, 374400, 374400, 508032, 508032, 709632, 855360, 1788480, 1788480
OFFSET
0,5
COMMENTS
Product of exponents of prime factorization of A048803 (squarefree factorials).
FORMULA
a(n) = Product_{k=1..A000720(n)} floor(n/A000040(k)).
a(n) = A005361(A048803(n)).
EXAMPLE
A048803(14) = 1816214400 = 2^7 * 3^4 * 5^2 * 7^2 * 11 * 13 so a(14) = 7 * 4 * 2 * 2 * 1 * 1 = 112.
MAPLE
a:= n-> mul(floor(n/p), p=select(isprime, [$2..n])):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 23 2019
MATHEMATICA
Table[Product[Floor[n/Prime[k]], {k, 1, PrimePi[n]}], {n, 0, 47}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 22 2019
STATUS
approved