login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309858 Number A(n,k) of k-uniform hypergraphs on n unlabeled nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals. 15
2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 4, 2, 1, 1, 1, 4, 5, 2, 1, 1, 1, 2, 11, 6, 2, 1, 1, 1, 1, 5, 34, 7, 2, 1, 1, 1, 1, 2, 34, 156, 8, 2, 1, 1, 1, 1, 1, 6, 2136, 1044, 9, 2, 1, 1, 1, 1, 1, 2, 156, 7013320, 12346, 10, 2, 1, 1, 1, 1, 1, 1, 7, 7013320, 1788782616656, 274668, 11, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
See A000088 and A000665 for more references.
LINKS
Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989.
Wikipedia, Hypergraph
FORMULA
A(n,k) = A(n,n-k) for 0 <= k <= n.
A(n,k) - A(n-1,k) = A301922(n,k) for n,k >= 1.
EXAMPLE
Square array A(n,k) begins:
2, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 1, 1, 1, 1, 1, 1, ...
2, 3, 2, 1, 1, 1, 1, 1, ...
2, 4, 4, 2, 1, 1, 1, 1, ...
2, 5, 11, 5, 2, 1, 1, 1, ...
2, 6, 34, 34, 6, 2, 1, 1, ...
2, 7, 156, 2136, 156, 7, 2, 1, ...
2, 8, 1044, 7013320, 7013320, 1044, 8, 2, ...
MAPLE
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
[x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
/igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
/p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
`if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
/n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
A:= proc(n, k) option remember; `if`(k>n, 1,
`if`(k>n-k, A(n, n-k), b(n$2, [], k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
PROG
(PARI)
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L<k, listput(L, #L))); Vec(L)}
can(v, f)={my(d=1, u=v); while(d>0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
T(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!} \\ Andrew Howroyd, Aug 22 2019
CROSSREFS
Cf. A301922, A309865 (the same as triangle).
Sequence in context: A023518 A326194 A331251 * A022921 A080763 A245920
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 20 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 06:30 EDT 2024. Contains 375814 sequences. (Running on oeis4.)