|
|
A309756
|
|
Approximation of the 2-adic integer arctan(4) up to 2^n.
|
|
2
|
|
|
0, 0, 0, 4, 4, 4, 4, 68, 68, 324, 324, 324, 2372, 2372, 2372, 18756, 51524, 51524, 182596, 444740, 969028, 2017604, 4114756, 4114756, 4114756, 20891972, 20891972, 20891972, 20891972, 289327428, 289327428, 1363069252, 1363069252, 1363069252, 1363069252
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (Sum_{i=0..floor((n-3)/4)} (-1)^i*4^(2*i+1)/(2*i+1)) mod 2^n.
|
|
EXAMPLE
|
a(3) = 4^1 mod 2^3 = 4;
a(6) = 4^1 mod 2^6 = 4
a(7) = (4^1 - 4^3/3) mod 2^7 = 68;
a(10) = (4^1 - 4^3/3) mod 2^10 = 324;
a(11) = (4^1 - 4^3/3 + 4^5/5) mod 2^11 = 324;
a(14) = (4^1 - 4^3/3 + 4^5/5) mod 2^14 = 2372;
a(15) = (4^1 - 4^3/3 + 4^5/5 - 4^7/7) mod 2^15 = 18756.
a(18) = (4^1 - 4^3/3 + 4^5/5 - 4^7/7) mod 2^18 = 182596.
|
|
PROG
|
(PARI) a(n) = lift(sum(i=0, (n-3)/4, Mod((-1)^i*4^(2*i+1)/(2*i+1), 2^n)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|