OFFSET
1,5
FORMULA
a(1) = 0; a(n+1) = Sum_{d|n} a(d)^(n/d-1).
MATHEMATICA
a[n_] := a[n] = SeriesCoefficient[x Sum[x^k/(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 80}]
a[n_] := a[n] = Sum[a[d]^((n - 1)/d - 1) , {d, Divisors[n - 1]}]; a[1] = 0; a[2] = 1; Table[a[n], {n, 1, 80}]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, #v-1, v[n+1]=sumdiv(n, d, v[d]^(n/d-1))); v} \\ Andrew Howroyd, Aug 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 10 2019
STATUS
approved