Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 28 2023 18:44:25
%S 0,1,2,1,11,2,1,8,7,14,13,4,27,-18,1,4,23,26,13,32,19,22,41,44,31,18,
%T 37,24,27,46,33,36,23,-6,-3,16,19,38,41,12,-1,2,-11,8,11,-2,17,4,-9,
%U -6,13,16,3,22,9,12,31,34,53,8
%N Irregular triangle read by rows: T(n,k) = A060753(n)*k-A038110(n)*A286941(n,k).
%C The sequence is Primorial rows of A308121.
%C Row n has length A005867(n).
%C Row n > 1 average value = A060753(n)/2.
%C Row n > 1 has sum = A002110(n-1)*A038110(n)/2.
%C First value on row(n) = A161527(n-1).
%C Last value on row(n) = A038110(n) for n > 2.
%C For n > 1, A060753(n) = Max(row) + Min(row).
%C For values x and y on row n > 1 at positions a and b on the row:
%C x + y = A060753(n), where a = A005867(n-1) - (b-1).
%C For n > 2 the penultimate value on row A002110(n) is given by
%C A038110(n)*A000040(n)-A060753(n).
%C Related identity:
%C A038110(n)/A038111(n)*(Prime(n)^2) - (A038110(n)/A038111(n)*((A038110(n)*Prime(n) - A060753(n))*Prime(n)/A038110(n))) = 1.
%H Michael De Vlieger, <a href="/A309497/b309497.txt">Table of n, a(n) for n = 0..6299</a> (rows n = 0..6, flattened)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Totative.html">Totative</a>
%e The triangle starts:
%e row1: 0;
%e row2: 1;
%e row3: 2, 1;
%e row4: 11, 2, 1, 8, 7, 14, 13, 4;
%e row5: 27, -18, 1, 4, 23, 26, 13, 32, 19, 22, 41, 44, 31, 18, 37, 24, 27, 46, 33, 36, 23, -6, -3, 16, 19, 38, 41, 12, -1, 2, -11, 8, 11, -2, 17, 4, -9, -6, 13, 16, 3, 22, 9, 12, 31, 34, 53, 8;
%t row[0] = 0; row[n_] := -(v = Numerator[Product[1 - 1/Prime[i], {i, 1, n}] / Prime[n]] * Select[Range[(p = Product[Prime[i], {i, 1, n}])], CoprimeQ[p, #] &]) + Denominator[Product[((pr = Prime[i]) - 1)/pr, {i, 1, n}]] * Range[Length[v]]; Table[row[n], {n, 0, 4}] // Flatten (* _Amiram Eldar_, Aug 10 2019 *)
%Y Cf. A058250, A005867, A002110, A038110, A038111, A060753, A286941, A058262, A161527, A083140, A308121.
%K sign,look,tabf
%O 0,3
%A _Jamie Morken_, Aug 05 2019