login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309473
a(n) = (-1)^n + Sum_{k=0..n-1} binomial(n-1,k) * a(k) * a(n-k-1).
0
1, 0, 1, 1, 3, 11, 43, 195, 1063, 6395, 42371, 311883, 2501159, 21672355, 202544323, 2028522067, 21658255431, 245738583307, 2952508103651, 37440976938875, 499785548010759, 7005210659040979, 102862231664567651, 1579045889274408259, 25294106622048460903
OFFSET
0,5
FORMULA
E.g.f. A(x) satisfies: A'(x) = A(x)^2 - exp(-x).
From Vaclav Kotesovec, Jun 11 2020: (Start)
E.g.f.: exp(-x/2) * (BesselI(1, 2*exp(-x/2)) * (BesselK(0, 2) + BesselK(1, 2)) + (BesselI(0, 2) - BesselI(1, 2)) * BesselK(1, 2*exp(-x/2))) / ((BesselI(1, 2) - BesselI(0, 2)) * BesselK(0, 2*exp(-x/2)) + BesselI(0, 2*exp(-x/2)) * (BesselK(0, 2) + BesselK(1, 2))).
a(n) ~ n! / r^(n+1), where r = 1.4982609322383959128764444062824740935658895762... is the real root of the equation (BesselI(0, 2) - BesselI(1, 2)) * BesselK(0, 2*exp(-r/2)) = (BesselK(0, 2) + BesselK(1, 2)) * BesselI(0, 2*exp(-r/2)). (End)
MATHEMATICA
a[n_] := a[n] = (-1)^n + Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
terms = 24; A[_] = 1; Do[A[x_] = Normal[Integrate[A[x]^2 - Exp[-x], x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 11 2020
STATUS
approved