login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n)!/A309205(n).
1

%I #15 Aug 27 2019 08:20:57

%S 1,1,1,1,5,1,1,1,7,1,1,1,13,19,5,1,221,1,1,1,1,1,13,17,5,1,47,4913,29,

%T 7,11,53,1,47,325,13,1147,41,1,1,41,1081,11,1,5,1,1,83,1,1,133,1,2491,

%U 97,5,103,61,1,1,19,226493,1,1,1,5,31,1,1,1,1271,289

%N a(n) = (2*n)!/A309205(n).

%C _Bill Gosper_ points out that this is a better fingerprint for the series than A309205.

%t F[n_] := Module[{p}, p = 1 + O[x]; For[k=2, k <= n, k++, p = Cos[x p]]; p];

%t seq[n_] := Module[{v}, v = CoefficientList[F[n], x]; Table[(2(k - 1))!/ Denominator[v[[2k - 1]]], {k, 1, n}]];

%t seq[71] (* _Jean-François Alcover_, Aug 27 2019, from PARI *)

%o (PARI) \\ here F(n) gives n terms of power series.

%o F(n)={my(p=1+O(x)); for(k=2, n, p=cos(x*p)); p}

%o seq(n)={my(v=Vec(F(n))); vector(n, k, (2*(k-1))!/denominator(v[2*k-1]))} \\ _Andrew Howroyd_, Aug 17 2019

%Y Cf. A309204, A309205.

%K nonn,frac

%O 0,5

%A _N. J. A. Sloane_, Jul 28 2019, following a suggestion from _Bill Gosper_.

%E Terms a(31) and beyond from _Andrew Howroyd_, Aug 17 2019