%I #9 Jul 14 2019 11:56:18
%S 74,141,194,199,202,227,228,234,268,294,310,323,326,338,353,379,381,
%T 387,434,439,455,461,462,464,467,494,499,519,522,526,532,535,542,555,
%U 561,563,588,599,606,613,617,619,632,654,669,737,753,774,781,793,818,851,858,873
%N Numbers k for which rank of the elliptic curve y^2=x^3+(k^2-6*k-3)*x^2+16*k*x is 2.
%H Allan J. MacLeod, <a href="http://web.archive.org/web/20100125135648/http://maths.paisley.ac.uk/allanm/ECRNT/knight/knintro.htm">Knight's Problem</a>
%F A309142(a(n)) = 2.
%o (PARI) for(k=10, 1e3, if(ellanalyticrank(ellinit([0, k^2-6*k-3, 0, 16*k, 0]))[1]==2, print1(k", ")))
%Y Cf. A309142.
%K nonn
%O 1,1
%A _Seiichi Manyama_, Jul 14 2019