

A309143


Numbers k for which rank of the elliptic curve y^2=x^3+(k^26*k3)*x^2+16*k*x is 2.


1



74, 141, 194, 199, 202, 227, 228, 234, 268, 294, 310, 323, 326, 338, 353, 379, 381, 387, 434, 439, 455, 461, 462, 464, 467, 494, 499, 519, 522, 526, 532, 535, 542, 555, 561, 563, 588, 599, 606, 613, 617, 619, 632, 654, 669, 737, 753, 774, 781, 793, 818, 851, 858, 873
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..54.
Allan J. MacLeod, Knight's Problem


FORMULA

A309142(a(n)) = 2.


PROG

(PARI) for(k=10, 1e3, if(ellanalyticrank(ellinit([0, k^26*k3, 0, 16*k, 0]))[1]==2, print1(k", ")))


CROSSREFS

Cf. A309142.
Sequence in context: A270340 A300379 A300681 * A044325 A044706 A217991
Adjacent sequences: A309140 A309141 A309142 * A309144 A309145 A309146


KEYWORD

nonn


AUTHOR

Seiichi Manyama, Jul 14 2019


STATUS

approved



