OFFSET
2,2
COMMENTS
Here, a cograph is basically a partition of unlabeled edges of the complete graph on n unlabeled vertices. - Andrey Zabolotskiy, Aug 27 2022
LINKS
Robert Haas, Cographs, arXiv:1905.12627 [math.GM], 2019, p. 3, 57.
Robert Haas, Intersection Cographs and Aesthetics, Journal of Humanistic Mathematics, 12 (2022), 4-23.
MATHEMATICA
terms[p_] := CoefficientRules[p, x /@ Range@Max[{0}, Cases[p, x[t_] :> t, \[Infinity]]]];
cycleindSymm[n_] := cycleindSymm[n] = terms@CycleIndexPolynomial[SymmetricGroup[n], x /@ Range[n]];
cycleindEdge[0|1] = 1;
cycleindEdge[n_] := cycleindEdge[n] = terms@Sum[Last[t] With[{tt = First[t]}, With[{ind = Select[Range@n, tt[[#]] != 0 &]},
Product[x[LCM@@p]^(GCD@@p Times@@tt[[p]]), {p, Subsets[ind, {2}]}]
Product[With[{e = tt[[k]]}, x[k]^(k e (e-1)/2 + Quotient[k-1, 2] e) If[EvenQ[k], x[k/2]^e, 1]], {k, ind}]
]], {t, cycleindSymm[n]}];
v[1, _] = v[_, 1] = 1;
v[n_, m_] := Sum[Last[a] Last[b] With[{aa = First@a, bb = First@b}, Product[Sum[vb bb[[vb]], {vb, Intersection[Divisors[va], Range@m]}]^aa[[va]], {va, Select[Range@Length@aa, aa[[#]] != 0 &]}]], {b, cycleindSymm[m]}, {a, cycleindEdge[n]}];
a[n_] := 1 + v[n, -1 + n (n-1)/2];
Table[a[n], {n, 2, 7}] (* Andrey Zabolotskiy, Feb 06 2024, after Marko Riedel *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, Jul 13 2019
EXTENSIONS
a(6)-a(9) from Andrey Zabolotskiy, Aug 27 2022
a(10) from Andrey Zabolotskiy, Feb 06 2024
STATUS
approved