login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309116
a(n) = number of cographs on n points.
1
1, 3, 25, 1299, 1974452, 94345468975, 152799292695935115, 10526127565809458484649781, 38375912431199015810067477044326371
OFFSET
2,2
COMMENTS
Here, a cograph is basically a partition of unlabeled edges of the complete graph on n unlabeled vertices. - Andrey Zabolotskiy, Aug 27 2022
LINKS
Robert Haas, Cographs, arXiv:1905.12627 [math.GM], 2019, p. 3, 57.
Robert Haas, Intersection Cographs and Aesthetics, Journal of Humanistic Mathematics, 12 (2022), 4-23.
MATHEMATICA
terms[p_] := CoefficientRules[p, x /@ Range@Max[{0}, Cases[p, x[t_] :> t, \[Infinity]]]];
cycleindSymm[n_] := cycleindSymm[n] = terms@CycleIndexPolynomial[SymmetricGroup[n], x /@ Range[n]];
cycleindEdge[0|1] = 1;
cycleindEdge[n_] := cycleindEdge[n] = terms@Sum[Last[t] With[{tt = First[t]}, With[{ind = Select[Range@n, tt[[#]] != 0 &]},
Product[x[LCM@@p]^(GCD@@p Times@@tt[[p]]), {p, Subsets[ind, {2}]}]
Product[With[{e = tt[[k]]}, x[k]^(k e (e-1)/2 + Quotient[k-1, 2] e) If[EvenQ[k], x[k/2]^e, 1]], {k, ind}]
]], {t, cycleindSymm[n]}];
v[1, _] = v[_, 1] = 1;
v[n_, m_] := Sum[Last[a] Last[b] With[{aa = First@a, bb = First@b}, Product[Sum[vb bb[[vb]], {vb, Intersection[Divisors[va], Range@m]}]^aa[[va]], {va, Select[Range@Length@aa, aa[[#]] != 0 &]}]], {b, cycleindSymm[m]}, {a, cycleindEdge[n]}];
a[n_] := 1 + v[n, -1 + n (n-1)/2];
Table[a[n], {n, 2, 7}] (* Andrey Zabolotskiy, Feb 06 2024, after Marko Riedel *)
CROSSREFS
Cf. partitions into no more than 2..5 parts: A007869, A230367, A233748, A233894.
Sequence in context: A012764 A219275 A101733 * A094815 A246536 A183248
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, Jul 13 2019
EXTENSIONS
a(6)-a(9) from Andrey Zabolotskiy, Aug 27 2022
a(10) from Andrey Zabolotskiy, Feb 06 2024
STATUS
approved