login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309104
a(n) = Sum_{k >= 0} floor(n^(2*k+1) / (2*k+1)!).
2
0, 1, 3, 9, 25, 72, 199, 545, 1487, 4048, 11007, 29930, 81371, 221199, 601295, 1634499, 4443044, 12077466, 32829974, 89241138, 242582585, 659407853, 1792456409, 4872401708, 13244561050, 36002449653, 97864804699, 266024120286, 723128532126, 1965667148555
OFFSET
0,3
COMMENTS
This sequence is inspired by the Maclaurin series for the hyperbolic sine function.
FORMULA
a(n) ~ sinh(n) as n tends to infinity.
a(n) <= A000471(n).
EXAMPLE
For n = 5:
- we have:
k 5^(2*k+1)/(2*k+1)!
- ------------------
0 5
1 20
2 26
3 15
4 5
5 1
>=6 0
- hence a(5) = 5 + 20 + 26 + 15 + 5 + 1 = 72.
MAPLE
f:= proc(n) local t, k, v;
v:= n; t:= n;
for k from 1 do
v:= v*n^2/(2*k*(2*k+1));
if v < 1 then return t fi;
t:= t + floor(v);
od
end proc:
map(f, [$0..30]); # Robert Israel, Mar 18 2020
PROG
(PARI) a(n) = { my (v=0, d=n); forstep (k=2, oo, 2, if (d<1, return (v), v += floor(d); d *= n^2/(k*(k+1)))) }
CROSSREFS
See A309087 for similar sequences.
Cf. A000471.
Sequence in context: A291683 A079857 A265940 * A211282 A211298 A138574
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Jul 12 2019
EXTENSIONS
Definition corrected by Robert Israel, Mar 18 2020
STATUS
approved