login
A308908
Sum of the fourth largest parts in the partitions of n into 6 squarefree parts.
7
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 7, 11, 12, 18, 22, 32, 34, 47, 52, 71, 78, 102, 116, 154, 170, 217, 243, 305, 329, 406, 445, 546, 587, 702, 768, 921, 982, 1147, 1240, 1459, 1562, 1811, 1948, 2260, 2401, 2748, 2943, 3387, 3596, 4087, 4381, 4987, 5288, 5959
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * k, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308906(n) - A308907(n) - A308909(n) - A308910(n) - A308911(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[k*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved