login
A308906
Sum of the smallest parts in the partitions of n into 6 squarefree parts.
7
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 9, 9, 12, 15, 21, 23, 31, 32, 45, 50, 61, 66, 87, 94, 114, 123, 154, 165, 199, 212, 261, 276, 323, 345, 418, 438, 507, 538, 637, 672, 771, 810, 947, 999, 1130, 1192, 1381, 1445, 1625, 1716, 1955, 2045, 2289, 2399, 2720
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * m, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308907(n) - A308908(n) - A308909(n) - A308910(n) - A308911(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[m*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved