login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308787
Primes p such that A001175(p) = (p-1)/2.
9
29, 89, 101, 181, 229, 349, 401, 509, 761, 941, 1021, 1061, 1109, 1229, 1249, 1361, 1409, 1549, 1621, 1669, 1709, 1741, 1789, 1861, 2029, 2069, 2089, 2441, 2621, 2801, 2861, 3089, 3169, 3301, 3389, 3461, 3581, 3821, 3881, 3989, 4001, 4049, 4201, 4229, 4549, 4729
OFFSET
1,1
COMMENTS
Primes p such that ord((1+sqrt(5))/2,p) = (p-1)/2, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 2.
Note that the Pisano period of {T(n)} modulo p must be even, so we have p == 1 (mod 4) for primes p in this sequence.
The number of terms below 10^N:
N | Number | Decomposing primes*
3 | 10 | 78
4 | 89 | 609
5 | 630 | 4777
6 | 5207 | 39210
7 | 44296 | 332136
8 | 382966 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).
MATHEMATICA
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k+1], n] == 1, Return[k]]];
Reap[For[p = 2, p <= 4729, p = NextPrime[p], If[pn[p] == (p-1)/2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 01 2019 *)
PROG
(PARI) Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4, p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M, p)^v[d]==Id, return(v[d]))))
forprime(p=2, 4800, if(Pisano_for_decomposing_prime(p)==(p-1)/2, print1(p, ", ")))
CROSSREFS
Similar sequences that give primes such that (a) holds: A003147/{5} (s=1), this sequence (s=2), A308788 (s=3), A308789 (s=4), A308790 (s=5), A308791 (s=6), A308792 (s=7), A308793 (s=8), A308794 (s=9).
Sequence in context: A042658 A042660 A047650 * A141883 A142791 A325073
KEYWORD
nonn
AUTHOR
Jianing Song, Jun 25 2019
STATUS
approved