login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308785
Primes p such that A001175(p) = 2*(p+1)/7.
3
307, 797, 1483, 3023, 4157, 4283, 6397, 6733, 7027, 7433, 7867, 9337, 9743, 9883, 10177, 10303, 10597, 11423, 12823, 14293, 18493, 19963, 20593, 20873, 24247, 24793, 25703, 28433, 29917, 30113, 31387, 31723, 31793, 32353, 33347, 34537, 34747, 37057, 38653, 38723
OFFSET
1,1
COMMENTS
Primes p such that ord((1+sqrt(5))/2,p) = 2*(p+1)/7, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Also, primes p such that the least integer k > 0 such that M^k == I (mod p) is 2*(p+1)/7, where M = [{1, 1}, {1, 0}] and I is the identity matrix.
Also, primes p such that A001177(p) = (p+1)/7 or (p+1)/14. If p == 1 (mod 4), then A001177(p) = (p+1)/14, otherwise (p+1)/7.
Also, primes p such that ord(-(3+sqrt(5))/2,p) = (p+1)/7 or (p+1)/14. If p == 1 (mod 4), then ord(-(3+sqrt(5))/2,p) = (p+1)/14, otherwise (p+1)/7.
In general, let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p) (see the Wikipedia link below), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ...
If (b) holds, then the entry point of {T(n)} modulo p is (p+1)/r if p == 3 (mod 4) and (p+1)/(2r) if p == 1 (mod 4). Proof: let d = ord(u,p) = 2*(p+1)/r, d' = ord(-u^2,p), then (-u^2)^d' == (u^(-p-1)*u^2)^d == u^(d'*(-p+1)) (mod p), so d divides d'*(p-1), d' = d/gcd(d, p-1). It is easy to see that gcd(d, p-1) = 4 if p == 1 (mod 4) and 2 if p == 3 (mod 4).
Here k = 1, and this sequence gives primes such that (b) holds and r = 7. For k = 1, r cannot be a multiple of 5 because if 5 divides p+1 then p decomposes in K = Q[sqrt(5)], which contradicts with (b).
Number of terms below 10^N:
N | 1 mod 4 | 3 mod 4 | Total | Inert primes*
3 | 1 | 1 | 2 | 88
4 | 6 | 8 | 14 | 618
5 | 48 | 42 | 90 | 4813
6 | 371 | 350 | 721 | 39286
7 | 3098 | 3086 | 6184 | 332441
8 | 27035 | 26989 | 54024 | 2880969
* Here "Inert primes" means primes p > 2 such that Legendre(5,p) = -1, i.e., p == 2, 3 (mod 5).
LINKS
Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 25-29.
Wikipedia, Pisano period
MATHEMATICA
Select[Prime@ Range[1000], Function[n, Mod[Last@ NestWhile[{Mod[#2, n], Mod[#1 + #2, n], #3 + 1} & @@ # &, {1, 1, 1}, #[[1 ;; 2]] != {0, 1} &], n] == Mod[2 (n + 1)/7, n] ]] (* Michael De Vlieger, Mar 31 2021, after Leo C. Stein at A001175 *)
PROG
(PARI) Pisano_for_inert_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4, p)==-1, my(v=divisors(2*(p+1))); for(d=1, #v, if(Mod(M, p)^v[d]==Id, return(v[d]))))
forprime(p=2, 40000, if(Pisano_for_inert_prime(p)==2*(p+1)/7, print1(p, ", ")))
CROSSREFS
Similar sequences that give primes such that (b) holds: A071774 (r=1), A308784 (r=3), this sequence (r=7), A308786 (r=9).
Sequence in context: A309101 A098042 A125252 * A142572 A204477 A176091
KEYWORD
nonn
AUTHOR
Jianing Song, Jun 25 2019
STATUS
approved