login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308362
Number of (2k+1)-ary quasitrivial semigroups on an n-element set.
1
1, 5, 23, 162, 1382, 14236, 170872, 2344530, 36188534, 620652000, 11708927276, 240976560622, 5372724404530, 129002764437228, 3318690040767224, 91067432174168202, 2655146132506208558, 81966680980803524728, 2670959894858615348356, 91616517379045122841830
OFFSET
1,2
COMMENTS
Number of (2k+1)-ary associative and quasitrivial operations on an n-element set.
LINKS
M. Couceiro, J. Devillet, All quasitrivial n-ary semigroups are reducible to semigroups, arXiv:1904.05968 [math.RA], 2019.
Jimmy Devillet, Miguel Couceiro, Characterizations and enumerations of classes of quasitrivial n-ary semigroups, 98th Workshop on General Algebra (AAA98, Dresden, Germany 2019).
FORMULA
a(n) = A308352(n) + A292933(n) + A308354(n) for n >= 1.
a(n) = A292932(n) + binomial(n,2)*A292932(n-2) for n >= 2.
E.g.f.: (2 + x^2)/(6 - 4*exp(x) + 2*x). - Vaclav Kotesovec, Jun 05 2019
a(n) ~ n! * (r^2 - 6*r + 11) / (2*(r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019
MATHEMATICA
nmax = 20; Rest[CoefficientList[Series[(2 + x^2)/(6 - 4*E^x + 2*x), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. Devillet, May 22 2019
STATUS
approved