OFFSET
0,18
LINKS
Seiichi Manyama, Antidiagonals n = 0..50, flattened
FORMULA
A(n,k) = Sum_{i=k..k*n} b(i) where Sum_{i=k..k*n} b(i) * (-x)^i/i! = (1/k!) * (Sum_{i=1..n} x^i/i!)^k.
EXAMPLE
For (n,k) = (3,2), (1/2) * (Sum_{i=1..3} x^i/i!)^2 = (1/2) * (x + x^2/2 + x^3/6)^2 = (-x)^2/2 + (-3)*(-x)^3/6 + 7*(-x)^4/24 + (-10)*(-x)^5/120 + 10*(-x)^6/720. So A(3,2) = 1 - 3 + 7 - 10 + 10 = 5.
Square array begins:
1, 0, 0, 0, 0, 0, ...
1, -1, 1, -1, 1, -1, ...
1, 0, 1, 5, 36, 329, ...
1, -1, 5, -120, 6286, -557991, ...
1, 0, 15, 2380, 1056496, 1006985994, ...
1, -1, 56, -52556, 197741887, -2063348839223, ...
1, 0, 203, 1192625, 38987482590, 4546553764660831, ...
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, May 21 2019
STATUS
approved