login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k)^3)/k.
1

%I #8 Aug 10 2019 04:26:57

%S 1,2,3,1,-1,-6,-3,2,9,9,-6,-24,-25,16,72,75,-35,-213,-239,78,627,767,

%T -182,-1890,-2477,355,5847,8109,-360,-18195,-26801,-1225,56724,89040,

%U 11431,-177897,-297030,-61857,560310,994427,284075,-1766754,-3338212,-1201932

%N Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k)^3)/k.

%C Inverse Euler transform of triangular numbers (A000217).

%F -1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000217.

%t nmax = 44; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - x^k)^3]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%t nmax = 50; s = ConstantArray[0, nmax]; Do[s[[j]] = j^2*(j + 1)/2 - Sum[s[[d]]*(j - d)*(j - d + 1)/2, {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* _Vaclav Kotesovec_, Aug 10 2019 *)

%Y Cf. A000217, A000294, A008683, A308291, A316152.

%K sign

%O 1,2

%A _Ilya Gutkovskiy_, May 18 2019